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Abstract

Progress in short-pulsed laser technology has opened a route to time-resolved XUV
spectroscopy with unprecedented time-resolution of hundreds of attoseconds.
Taking advantage of this development, several recent studies have focused in particular
on the dynamics of Fano resonances. First explained theoretically by U. Fano as the
result of interference between direct and indirect paths to ionization, these kind of
resonances appear ubiquitously in quantum systems.
The simplest case of an isolated autoionizing state coupled to the ionization contin-
uum has been studied extensively both theoretically and experimentally. Yet, more
complex examples of Fano dynamics, where more than one state participate in the
autoionization process, are still not well understood. For example, the case of two
discrete states coupled to a common continuum has been known to lead to the effect
of interference stabilization, where one of the states’ lifetime increases for increasing
coupling strength; however, the effect of interference stabilization on the autoionizing
processes in molecules has not been observed until recently.
In 2015, a photoelectron spectroscopy experiment on the window Fano resonance at
17.33 eV in N2 showed that two Rydberg states, the (B2Σ+

u )3dπg and (B2Σ+
u )4′s′σg

members of the Hopfield ’emission’ series, are at play in the complex autoionizing dy-
namics. To develop the theoretical description of the N2 experiment, the interference
stabilization effect was included in this thesis in the framework of Fano’s theory of
autoionization in the time-domain. The general case of two discrete states coupled
to an arbitrary number of continua was considered, with the aim of resolving exist-
ing discrepancies between theory and experiment on the above-mentioned autoionizing
resonance in N2.
In the first chapter, Fano’s theory of autoionizing resonances in the energy-domain
is discussed. To make direct comparisons with time-resolved experiments and observa-
tions, the description of autoionization in the time-domain is also included. Since the
necessary parameters to theoretically describe a Fano resonance are usually provided
by electronic structure calculations, the electronic structure of molecules, its notation
and the theoretical and numerical methods used to calculate it are briefly described. At
the end of the chapter, I focus on the case of N2 and its autoionization series, including
the window resonance at 17.33 eV.
In the second chapter, two of the most frequently used experimental techniques to
record electron dynamics in real time, transient absorption and photoelectron spec-
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troscopy, are discussed. The experimental setup and results of the time-, angular- and
energy-resolved photoelectron experiment recently performed on N2 are addressed. In
particular, I show how the analysis of the data suggests the presence of the interference
stabilization effect at play in the complex electron dynamics that leads to autoioniza-
tion.
In the third chapter, the case of two autoionizing states coupled to an arbitrary num-
ber of continua is included in the existing theoretical framework. This generalization
leads to novel theoretical results, including the partially balanced and unbalanced case
of interference stabilization and the resulting time-dependent populations and photo-
electron and absorption spectra.
In the fourth chapter, the interference stabilization theory is applied to the case of
the Fano resonance at 17.33 eV in N2. The description of the theoretical model and
the resulting theoretical lineshape profiles are shown. The theoretical calculations fit
remarkably well with the experimental data and thus prove that the effect can describe
the observed autoionization process.
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Deutsche Abstrakt

Fortschritte in der Ultrakurzpulslasertechnologie haben den Weg für zeitaufgelöste
XUV Spektroskopie mit zuvor unerreichter zeitlicher Auflösung von einigen hunderten
Attosekunden erffnet.
Jüngste Studien haben diese Entwicklung insbesondere genutzt um die Dynamiken von
Fano-Resonanzen zu erforschen. Diese Art von Resonanzen, die als erstes theoretisch
von U. Fano als Ergebnis der Interferenz zwischen direkten und indirekten Pfaden zur
Ionisation beschrieben wurden, erscheinen allgegenwärtig in Quantensystemen.
Der einfachste Fall eines isolierten Autoionisationszustands gekoppelt and das Ionisa-
tionskontinuum wurde intensiv sowohl in Theorie als auch im Experiment erforscht.
Komplexere Beispiele von Fano-Dynamiken, bei denen mehr als ein Zustand im Au-
toionisationsprozess beteiligt ist, sind jedoch immer noch nicht gut verstanden. So ist
zum Beispiel bekannt, dass es im Fall von zwei diskreten Zuständen, die mit einem
gemeinsamen Kontinuum interagieren, zum Effekt der Interferenzstabilisation kom-
men kann, bei der sich die Lebenszeit einer der Zustände mit der Kopplungsstärke
vergrößert; jedoch wurde dieser Effekt bis vor kurzem nicht in Molekülen beobachtet.
Ein Photoelektronenspektroskopie-Experiment and der Fano-Resonanz vonN2 bei 17.33
eV aus dem Jahr 2015 zeigte, dass zwei Rydberg Zustände, die (B2Σ+

u )3dπg und
(B2Σ+

u )4‘s′σg Zustände der Hopfield-”Emissions”-Serie, zu der komplexen Autoioni-
sationsdynamik beisteuern. Um eine theoretische Beschreibung des N2 Experiments
zu entwickeln, habe ich in dieser Thesis den Effekt der Interferenzstabilisierung in
Fanos Theorie der Autoionisation in der Zeitdomäne aufgenommen. Weiterhin habe
ich den generelleren Fall von zwei diskreten Zuständen, die an eine beliebige Anzahl
von Kontinua gekoppelt sind, untersucht, um Diskrepanzen zwischen der Theorie und
dem Experiment an den erwähnten Autionisationsresonanzen in N2 zu erklären.
Im ersten Kapitel wird Fanos Theorie der Autoionisationsresonanzen in der En-
ergiedomäne besprochen. Um den direkten Vergleich zwischen zeitaufgelösten Experi-
menten ziehen zu können, wird ebenso die Autoionisation in Zeitdomäne besprochen.
Da die nötigen Parameter um Fano-Resonanzen beschreiben zu können üblicherweise
von Elektronenstrukturberechnungen stammen, wird die Elektronenstruktur der Mole-
küle, ihre Notation und die genutzten theoretischen und numerischen Methoden zur
Berechnung kurz beschrieben. Am Ende befasse ich mich mit N2 und seinen Autoion-
isationsserien, inklusive der Fano-Resonanz bei 17.33 eV.
Im zweiten Kapitel werden zwei der am meisten genutzten experimentellen Techniken
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um Elektronendynamiken in der Zeitdomäne zu untersuchen beschrieben: Transiente
Absorption und Photoelektronenspektroskopie. Besprochen wird weiterhin der exper-
imentelle Aufbau und Ergebnisse des zeit-, winkel- und energieaufgelsten Photoelek-
tronenexperimentes an N2. Insbesondere zeige ich wie die Analyse der Ergebnisse auf
die Existenz von Interferenzstabilisierung in den komplexen Elektronendynamiken, die
zur Autoionisation führen, hindeuten.
Im dritten Kapitel wird der Fall von zwei Autoionisationszuständen, die an eine be-
liebige Anzahl von Kontinua gekoppelt sind, in die bestehende Theorie aufgenommen.
Diese Generalisierung führt zu neuen Ergebnissen wie dem partiell-ausgeglichenem
und unausgeglichenem Fall von Interferenzstabilisierung und den daraus resultieren-
den zeitabhängigen Populationen sowie Photoelektronen- und Absorptionsspektren.
Im vierten Kapitel wird die Theorie der Interferenzstabilisierung auf die Fano-Reso-
nanz von N2 bei 17.33 eV angewandt. Die Beschreibung des theoretischen Modells
und die daraus resultierenden theoretischen Linienprofile werden gezeigt. Die Berech-
nungen stimmen bemerkenswert gut mit den experimentellen Ergebnissen überein und
beweisen, dass der beobachtete Autoionisationsprozess durch Interferenzstabilisierung
beschrieben werden kann.
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Introduction

The study of electron dynamics is of fundamental importance to many different fields
in physics, from solid state to atomic and molecular physics. Electronic and nuclear
motions generally span different timescales due to the large difference in mass of elec-
trons and nuclei (figure 1); vibrations and rotations of nuclei unfold on times ranging
from the few femtoseconds to the hundreds of picoseconds, while electrons usually move
on the scale of few attoseconds to few femtoseconds. In the energy-domain picture,
this corresponds to few tens to hundreds of meV spacing in vibrational and rotational
states and to eV separation in electronic ones (figure 1).

Figure 1: The relevant timescales and corresponding energy spacing between different levels
for microscopic motion.

In order to create and probe electronic wavepackets, light sources providing short wave-
length from the VIS to the XUV spectrum are therefore needed. Until recently, short
pulsed sources in XUV were not available and the dynamics could only be studied indi-
rectly by analyzing the line profiles of electronic resonances in static XUV absorption
spectra, the latter usually provided by synchrotron light sources. However, the analysis
of the lineshapes can become a difficult task, especially when the profile is the result of
complex underlying electronic dynamics. In this case, time-resolved experiments and
time-domain approaches can be beneficial.
The observation of the evolution of a spectral feature in time can help disentangle the
single electronic contributions to the total signal and, benchmarking the experiment
with theoretical predictions, assign contributing electronic states. While femtosecond
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techniques are suitable for investigation of slow motions such as isomerization in pho-
tosensitive molecules, in order to observe an electron moving in real-time we need to
use the toolbox of attosecond technology [1]. The recent advances in this field like
High Harmonic Generation (HHG) and isolated attosecond pulses [1] provide indeed
exceptional time resolution down to the natural timescales on which the electronic dy-
namics unfolds.

Autoionizing resonances

Figure 2: The Fano profile. Figure
adapted from [2].

In this thesis, I will focus in particular on one of
the most basic electronic processes: autoioniza-
tion. In static absorption measurements, autoion-
ization processes lead to absorption lines with
characteristic asymmetric shapes. Also called
Fano resonances, they owe their name to the
italian-american physicist Ugo Fano, who first ex-
plained them in 1935 [3] and later described them
in a seminal paper in 1961 [2]. Fano resonances oc-
cur whenever a discrete state is coupled to a con-
tinuous band of states, appearing in the absorp-
tion spectrum of quantum systems as an asym-
metric lineshape (figure 1.2)

σ(ε) =
(q + ε)2

1 + ε2
(1)

where σ is the normalized absorption cross-section
and ε the dimensionless energy. Such lineshape is
the result of interference between the direct path-
way to the continuum state and the indirect one through the discrete state - q being
here the famous Fano parameter which depends roughly on the ratio between the prob-
ability of transition through the direct and indirect paths. First applied to autoionizing
states in helium atoms [2], Fano’s theory is used nowadays ubiquitously as it can de-
scribe phenomena ranging from Electromagnetically Induced Transparency (EIT) to
the Autler-Towns effect [4].
In this thesis I will focus on the Fano resonance in the absorption spectrum of the N2

molecule at 17.33 eV, which belongs to the ndπg series converging to the B2Σ+
u state

of the ion. Compared to simple autoionizing profiles, this window resonance cannot
be described in the standard Fano formalism. Specifically, in his 1961 paper Fano
considered three cases in the spectral domain: a single discrete state coupled to one
continuum, a number of discrete states coupled to one continuum and a single discrete
state coupled to a number of continua. This resonance instead is ascribable to the
fourth case: two discrete states coupled to a number of continua [5, 6].
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The interaction of two states with a common continuum can induce a counter-intuitive
but well known effect: the stabilization of a decaying state with increasing coupling
strength. The effect is commonly called interference stabilization or interference nar-
rowing [7–11]. Despite the large body of theoretical work present in the literature, the
case of two discrete states coupled to a number of continua was not considered before.
However, this is the case needed to describe the realistic situation of the N2 molecule
resonance at 17.33 eV. I will tackle the autoionizing process by using the standard
time-dependent formalism introduced by Popov, Movsesian and others, with the goal
of including in the existing framework this new case.
The choice of a time-dependent approach to describe autoionizing resonances provides
a direct comparison with time-resolved experiments, as the novel available tools in
time-resolved science allow us to film the evolution of autoionizing resonances on their
natural timescales. Control of such resonances via an external light field was also re-
cently shown to be possible [12].
In the first chapter of the thesis, after introducing the main theoretical methods used
to calculate the electronic states of a molecular system, I will focus on the spectral- and
time-domain description of autoionization. The chapter is concluded by the description
of the electronic structure of N2 and its autoionization features.
In the second chapter, I will introduce the time-resolved experimental techniques used
nowadays to study electronic dynamics in atoms and molecules, focusing on photo-
electron and transient absorption spectroscopy. Results from a time-, angular- and
energy-resolved photoelectron experiment recently performed on the N2 resonance at
17.33 eV will be discussed at the end of the chapter, together with a brief description
of the experimental setup.
The third chapter describes the interference stabilization effect in autoionization, where
novel theoretical results stemming from the inclusion of the above-mentioned case of
two states coupled to a number of continua in the existing theoretical framework will
be described.
Finally, I will show how the inclusion of the interference stabilization effect in the time-
dependent Fano picture of autoionization can shed light on multi-electron dynamics,
providing a simple qualitative description of the process and - using previous theoreti-
cal and experimental data [5,13,14] - solve the existing disagreements between ab-initio
calculations and spectroscopical data of the N2 resonance at 17.33 eV.
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Chapter 1

Autoionization in molecules

At the start of this chapter I will focus on autoionization in molecules by describing
the process from the point of view of Fano’s theory. Such approach will be explained
both in energy- and time-resolved fashion, that is through the Stationary and Time-
Dependent Schrödinger equation respectively, as it will be necessary later on in the
thesis when I will describe the interference stabilization effect.
The necessary parameters for Fano’s theory, for example the resonance energy Er, its
width Γ and the Fano parameter q itself, are usually provided by electronic structure
calculations. I will therefore discuss the electronic structure of molecules and give a
general overview of the theoretical methods used to calculate it.
The Born-Oppenheimer approximation will be first introduced since it constitutes the
basic ground on top of which computational methods for calculating electronic states
are built. I will then briefly introduce numerical approaches such as Hartree-Fock
and Configuration Interaction methods and the notation typically used to indicate the
various properties of electronic states in molecules.
In the last part of this chapter, I will focus on the nitrogen molecule N2, where I applied
the theory of interference stabilization to explain previously unresolved discrepancies
between theoretical and experimental data. The electronic structure of N2 and its
autoionization features in the region of the XUV spectrum between 17 and 18.9 eV
will be briefly described.

1.1 Autoionization

Whenever a molecule absorbs or emits a photon of frequency ω, a transition between
two states E1 and E2 occurs. Conservation of energy requires that

~ω = |E1 − E2| (1.1)

In general, we can speak of two kinds of states that can be involved in such a transition:
discrete and continuum states. The first are the states with a well defined energy and
appear in the spectrum as lines centred around the corresponding frequency ω = E/~.
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1.1. AUTOIONIZATION

Continuum states instead appear in the spectrum as broader (ideally flat) lineshapes
and span a continuum of energy. This is due to the fact that, while an electron in a
discrete state is subject to the parent ion potential and is thus confined to a certain
region in space, electrons in continuum states are not bound to the nucleus and they
are thus describable as free particles. As a result, their energy is not quantized.
Transitions can therefore occur between any of these states: in a photoionization pro-
cess for example, an atom or a molecule M absorbs a photon with an energy greater
than its ionization potential and emits an electron in the continuum, leaving behind
the ion M+. This corresponds to a transition between a discrete electronic state, the
one where the system starts from, and a continuum state where the electron is emitted.
The rate of such bound-free transitions can be greatly modified when a discrete state
is embedded into the continuum. Such structured continuum states occur naturally in
molecular systems when an excited bound state of the neutral molecule lies above the
energy of the states of the molecular ion and a coupling between the two is present.
In this case, the neutral molecule can absorb a photon and be excited to such a bound
state and subsequently decay by emitting an electron and relaxing to the lower ionic
state. This process is what we call autoionization :

M + ~ω →M∗ →M+ + e− (1.2)

Due to the mixing between a bound state and a continuum of states, the line profile
of an autoionizing state is asymmetrical (see figure 1.1). While these kind of profiles
were first observed in the 1930s, the underlying theory explaining their shape was first
published only some thirty years later by U. Fano in 1961 [2]. In the next section I will
thus go through Fano’s theory.

1.1.1 The Fano profile

In his paper from 1961 on autoionization, Fano explains the asymmetrical lineshape as
a result of interference between the two possible pathways leading to ionization: the
direct ionization from the initial state to the continuum and the indirect path through
the autoionizing state (figure 1.1).
To go through Fano’s theory of autoionizing resonances, let us consider a system com-
posed of three states: the initial state |i〉, the autoionizing state |n〉 and the ionization
continuum |E〉. The Hamiltonian is Ĥ = Ĥ0 + V̂ , Ĥ0 being the field-free Hamiltonian
and V̂ the interaction coupling the AIS to the continuum 1. Fano proceeds to diago-
nalize the submatrix of the total Hamiltonian describing the interaction between the
state |n〉 and the continuum |E〉 by looking for an eigenstate of the form

|Ψ〉 = an |n〉+

∫
dE ′aE′ |E ′〉 (1.3)

1The term V̂ has been traditionally called configuration interaction, since it describes the interac-
tion between the electronic configurations of the neutral molecule and the ion with one electron in the
ionization continuum.
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1.1. AUTOIONIZATION

Figure 1.1: In the left panel, the Fano resonance profile is plotted as a function of the reduced
energy ε = (E − En − F (E))/(Γ/2) for different q values. The black dotted line corresponds
to the asymptotic case of a Lorentzian profile (q → ∞). In the right panel, the two possible
pathways of ionization are labeled: 1 is the indirect path through the autoionizing states while
2 is the direct path into the ionization continuum.

which is inserted as an ansatz in the Schrödinger equation Ĥ |Ψ〉 = E |Ψ〉, yielding a
system of coupled equations for the AIS and continuum amplitudes. Without going
through the mathematical details, I present his final result:

|Ψ〉 =
1

πV ∗E
sin ∆ |Φ〉 − cos ∆ |E〉 (1.4)

where VE = 〈n| V̂ |E〉 is the transition element for the bound-continuum transition

and |Φ〉 = |n〉 + P
∫
dE ′

VE′ |E〉
E−E′ is the state |n〉 modified by the interaction with the

continuum. ∆ is the phase shift induced by the interaction, which will be imprinted
on the asymptotic behaviour of the continuum plane waves sin(k · r + ∆) and can be
written as

∆ = − arctan
π|VE|2

E − En − F (E)
(1.5)

where F (E) = P
∫
dE ′

VE′ |E〉
E−E′ is the energy shift of the discrete resonance due to its

interaction with the continuum. It is clear from the above expression that the phase
shift will vary by a factor of π as the energy is scanned across the resonance En+F (E).
The absorption spectrum can be found by considering the matrix element 〈g| T̂ |Ψ〉,
T̂ standing here for a suitable transition operator like the external field coupling the
ground state to the bound and continuum states. The modulus square of the matrix
element corresponds thus to the total probability of transition from the initial state |i〉
to the final eigenstate |Ψ〉 through the two possible paths. The result is the famous
Fano profile

σabs =
(q + ε)2

1 + ε2
(1.6)
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1.1. AUTOIONIZATION

where ε = E−En−F (E)
Γ/2

is the reduced energy, Γ = 2π|VE|2 the width of the resonance,
and q is the famous Fano parameter

q =
〈Φ| T̂ |i〉

πV ∗E 〈E| T̂ |i〉
(1.7)

which depends on the relative strength between the two pathways of ionization. In
an absorption experiment, the Fano parameter is thus completely determined by the
internal parameters of the atomic or molecular target. It is clear that as q changes
the lineshape will change accordingly (figure 1.1); reflecting the interference between
the two paths. In the case of large Fano parameters, a Lorentzian profile is obtained
as expected: the only path to ionization is through the resonance. For q = 0 instead,
a window resonance is obtained and no excitation of the continuum at the resonant
energy is possible. For intermediate cases, the destructive interference leads to a zero
probability of exciting a state when ε = −q and the profile becomes strongly asymmet-
rical. In his paper, Fano was able to fit the experimental lineshapes of the autoionizing
states of the He atom, a further proof of his correct analysis.
Clearly, Fano’s approach is formulated in the energy-domain. Autoionizing resonances
typically decay on timescales of few to few tens of femtoseconds and are thus dif-
ficult to observe in real-time. However, recent advances in time-domain methods
open the possibility of studying the autoionization process as it unfolds on its nat-
ural timescales [5, 6, 16, 17]. It is therefore interesting to provide a complementary
time-dependent description of the autoionization process, which I will do in the next
paragraphs.

1.1.2 Time-dependent description of Fano resonances

In order to treat the process of autoionization in a time-dependent fashion, I will use
a semi-classical approach where the molecule is quantized and the laser field is treated
classically. I again consider a system composed of three states

|Ψ(t)〉 = cg(t) |g〉+ ci(t) |i〉+

∫
dEcE(t) |E〉 (1.8)

where now the time-dependent Hamiltonian is given by Ĥ(t) = Ĥ0 + V̂ + ĤI(t), sum
of the free Hamiltonian Ĥ0, the configuration interaction V̂ and the interaction Hamil-
tonian ĤI(t) = −d̂ · E(t), where E(t) = AXUV (t)eiωXUV t is the electric field of a short
XUV laser pulse acting on the ground state at time zero and d̂ the dipole operator,
AXUV (t) = FXUV f(t) being here the envelope of the laser field. Inserting this ansatz in
the Time-Dependent Schrödinger equation (TDSE) i∂t |Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 we obtain
a system of coupled equations for the amplitudes:

iċg(t) = −dgiAXUV (t)ci(t)−
∫
dEdgEAXUV (t)cE(t) (1.9)
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1.1. AUTOIONIZATION

iċi(t) = (Ei − Eg − ωXUV )ci(t)− d∗giA∗XUV (t)cg(t) +

∫
dEViEcE(t) (1.10)

iċE(t) = (E − Eg − ωXUV )cE(t)− d∗gEA∗XUV (t)cg(t) + V ∗iEci(t) (1.11)

where ωXUV is the frequency of the laser field and atomic units are used. The continuum
amplitudes can be adiabatically eliminated by supposing that the continuum states
are weakly affected by their interaction with the resonance. This is equivalent to
approximating ċE(t) ' 0; the integration over all continuum states of the amplitude
cE(t) retains therefore only the contribution near the resonance, that is proportional
to iπδ(E − Eg − ωXUV ). The system of equations can thus be reduced to two coupled
equations for the ground and discrete state which take into account their interaction
with the continuum; by defining the Fano parameter as previously introduced, the
time-dependent dipole moment of the system can be found as [17]

d(t) = 〈Ψ(t)| d̂ |Ψ(t)〉 = e−iωXUV t
[
c∗g(t)dgici(t)(1− i/q) + iπ|cg(t)|2|dgE|2A∗XUV (t)

]
+ c.c

(1.12)
where c.c denotes the complex conjugate. If the ground state is left mostly unperturbed
by the external field then cg(t) ' 1 and the bound state amplitude can be expressed
as

ci(t) = ie−
Γ
2
td∗gi(1− i/q)AXUV (t) (1.13)

Finally, we can assume the excitation to be short in comparison to the autoionization
timescales and set it as AXUV (t) = FXUV δ(t). We then obtain the final expression for
the time-dependent dipole response of the system

d(t) = e−iωXUV t
[
iπ|dgE|2FXUV δ(t) + i|dgi|2(1− i/q)2FXUV e

−Γ
2
t
]

Θ(t) (1.14)

where Θ(t) is the Heaviside function accounting for causality and |FXUV |2 is the laser
intensity. The physical meaning of such expressions is clear: the first term in the
parenthesis accounts for the direct excitation into the continuum at the time of arrival
of the ultrashort pulse, while the second one represents the indirect path through
the autoionizing resonance, accessed through the transition dgi. The AIS decays with
τ = 1/Γ, where Γ = 2π|V |2 is again the width of the resonance. The crucial parameter
describing the relative phase of the two pathways it the Fano parameter: as q varies, the
phase shift of the response after the initial excitation changes. This phase shift, induced
by the mixing of the resonant and continuum states, is reflected in the spectral domain
by the asymmetric Fano lineshape, which can be found by considering the absorption
spectrum, defined as σabs ∝ Im[d(ω)] (d(ω) being the Fourier transform of the dipole
response).
As mentioned at the start of the chapter, the necessary parameters for Fano’s theory
are usually provided by electronic structure calculations. In the next part I will thus
briefly introduce these numerical approaches, which are in turn based on the Born-
Oppeneheimer approximation. This will help us to introduce the spectroscopic notation
of molecular resonances employed in the literature.
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1.2. MOLECULAR ELECTRONIC STATES

1.2 Molecular electronic states

1.2.1 The Born-Oppenheimer approximation

The full description of the electronic structure of a molecule is a difficult task to which
no analytical solutions can in general be found. Luckily, while the forces acting on nuclei
and electrons are comparable in magnitude, their large difference in mass implies that
the position of the nuclei can be considered as fixed in space on the typical timescales of
electron dynamics. This approximation is the core of the so-called Born-Oppenheimer
approximation, first introduced in 1927 [18].
In order to explain how the approximation works, let us consider a molecule consisting
for example of two nuclei with masses M together with a number N of electrons. The
Hamiltonian of the molecule can be written as

Ĥmol = T̂N + T̂e + V̂ = T̂N + Ĥe (1.15)

where T̂N is the kinetic energy operator of the nuclei, T̂e the kinetic energy operator
of the electrons and V̂ is the total potential energy of the system, consisting of the
Coulomb interaction between electrons V̂ee, between nuclei V̂NN and between electrons
and nuclei V̂Ne. Ĥe = T̂e + V̂ is hence called the electronic part of the Hamiltonian.
The time-independent Schrödinger equation for the molecule is thus

ĤmolΨ(Q,q) = EtotΨ(Q,q) (1.16)

where Q includes all nuclear coordinates (spins and positions of the nuclei) and q the
electronic ones. The Born-Oppenheimer approximation consists of separability of the
wavefunction into nuclear and electronic parts:

Ψ(Q,q) = Φ(Q)ψ(Q,q) (1.17)

where Φ(Q) describes the nuclei and ψ(Q,q) the electrons. Neglecting the influence of
the nuclear motion on the electrons, i.e forgetting about the nuclear kinetic operator
T̂N , we solve the Schrödinger equation

Ĥeψ(Q,q) = E(Q)ψ(Q,q) (1.18)

where E(Q) corresponds to the potential energy surface (PES) over which the
nuclei motion has to be solved and depends only parametrically on Q. Once the latter
equation is solved and E(Q) is found, the nuclear motion can then be found by solving

(T̂N + E(Q)ψ(Q,q))Φ(Q) = EtotΦ(Q) (1.19)

Hence, in the Born-Oppenheimer approximation, equation 1.18 is solved for different
values of the nuclear coordinates Q in order to obtain E(Q), which later plays the role
of the potential surface on which the nuclear motion is solved. In figure 1.2 I show an
example of a PES of a bound state of a diatomic molecule as a function of the relevant
coordinate, here the internuclear axis R.
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Figure 1.2: The PES of a bound state of a diatomic molecule. As the internuclear distance ap-
proaches zero, the repulsion between the nuclei leads to an increase in energy E(R→ 0)→∞,
while for large internuclear distances the potential energy surface approaches asymptotically
zero. Around the equilibrium distance R0, a series of vibrational states are depicted, indicat-
ing the possible vibrational states of the nuclear motion ν = 0, 1, 2, ... De stands here for the
dissociation energy, the energy required to break the bond between the two nuclei.

1.2.2 Hartree-Fock (HF) and Configuration Interaction (CI)
methods

The solution to the electronic equation 1.18 typically requires numerical methods. As
it is not the purpose of this work, I will not go into the details of such computational
techniques. However, it is important to mention that most of these methods use the
Hartree-Fock approximation, which in turn stems from the Born-Oppenheimer and
mean-field approximation, as their starting point.
In the mean-field approximation, a single electron moves in the electrostatic potential
given by the nuclei and the averaged charge distribution of the remaining electrons.
The wavefunction describing the single molecular orbital (MO) φi is usually built as a
linear combination of the atomic orbitals ψj (LCAO) of the single nuclei forming the
molecule

φi =
∑
j

cijψj (1.20)

The atomic orbitals ψj are in turn expanded on a basis set like Gaussian functions or
B-splines and optimized to experimental spectroscopic data.
The MOs are then filled in accordance to the Pauli principle which allows a maximum
of two electrons with opposite spins in each orbital. The resulting mean-field is then
compared to the initially guessed one and the orbitals’ shape is modified accordingly;
the Hartree-Fock is therefore a self-consistent method where the expansions coeffi-
cients cij are the parameters to optimize, usually via a variational approach with the
aim of minimizing the electronic configuration energy. Once the molecular orbitals are

23
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built, the total multi-electron molecular wavefunction has to be anti-symmetric due
to the spin-statistics theorem. To enforce this, the total wavefunction is written as a
Slater determinant of the MO:

|Ψe〉 =
1√
N !
||φ1〉 |φ2〉 . . . |φN〉| (1.21)

Due to the averaging procedure over the charge distribution of the electrons when build-
ing the MO, the Hartree-Fock method cannot take in full account the electron-electron
correlation. Consequently, there are situations where more sophisticated methods are
required in order to reconstruct molecular electronic states.
When several configurations, i.e. different arrangements of electrons in the MOs, are
strongly correlated to each other, one of the most frequently used methods is Con-
figuration Interaction (CI). In this approach, the total multi-electron wavefunction is
expanded on a set of Slater determinants, the so-called molecular configurations. In
its simplest formulation, the molecular configurations consider all possible excitation
of single electrons to any virtual orbital. The expansion coefficients on the Slater de-
terminants are then optimized. While the so-called active space of orbitals is limited
by computational power, more sophisticated approaches can also include double and
triple excitations to virtual orbitals. Physical intuition on the molecular system such
as symmetry and physical arguments can further help to obtain a better solution to
the problem.

1.2.3 Molecular orbitals notation

As mentioned above, MOs are built starting from atomic orbitals. For a diatomic
molecule, at large internuclear distances the MO reduce thus to the single separated
atomic orbitals localized on the individual nuclei. As the nuclei are moved closer to
each other, linear combinations of the atomic orbitals are taken to form the MOs.
In comparison to atoms, the molecular wavefunctions do not posses spherical symmetry.
In the case of a diatomic molecule though, the system is invariant with respect to
rotations around the internuclear axis. This implies that the projection of the total
angular momentum on the internuclear axis is a conserved quantity to which we can
associate a quantum number to classify the electronic states. The term symbol for
MOs is the following

nλg/u (1.22)

where n is the principal quantum number and λ is the projection of the total angular
momentum on the internuclear axis. The allowed values for λ = 0, 1, 2, .. are labeled
respectively with small Greek letters σ, π, δ, ... The g/u subscript refers to the inversion
symmetry around the center of the molecule. In the case of diatomic molecules, this
additional symmetry exists only if the molecule is homonuclear. Depending on the
symmetry of the electronic wavefunction, we speak of gerade/ungerade (g/u) states:

Ψ(r) = Ψ(−r) gerade (1.23)
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Ψ(r) = −Ψ(−r) ungerade (1.24)

The full molecular wavefunction is then built from combinations of the single MOs,
reflecting their symmetry. Here as well we associate a term symbol for the multi-
electron wavefunction

2S+1Λ
+/−
g/u (1.25)

where g/u refers again to the inversion symmetry around the origin of the coordinate
system, 2S + 1 is the multiplicity related to the the total spin S of the electrons and
Λ is again the projection of the total angular momentum on the internuclear axis. In
order to clearly separate it from the term symbol for the single MOs, the allowed values
Λ = 0, 1, 2, .. are associated with capital greek letters Σ,Π,∆, .. . +/− refers instead
to the additional symmetry for these states with respect to reflection in an arbitrary
plane containing the internuclear axis.
Now that I have introduced the main approximations in calculating the electronic
structure of molecular systems and the notation used in spectroscopy to classify the
different states, I can focus on a particular kind of electronic states that are found in
both atoms and molecules: autoionizing states. These are the kind of states on which
I will focus in this thesis work.

1.3 Electronic structure and autoionization of N2

Nitrogen is mostly found in its molecular form as N2. It is an example of a homonuclear
diatomic molecule, one of the lightest in nature.
While 78% of the total volume of the atmosphere on planet Earth is occupied by N2

in its gas phase, it is also found ubiquitously in living organisms and is thus one of the
main building blocks of our planet’s ecosystem [19].
A total of 14 electrons occupy the orbitals of the two N nuclei. 6 of the 10 valence
electrons of N2 participate in its triple bond, which is one of the strongest in nature
with a dissociation energy of 9.79 eV [20]. The strong bond can be broken by XUV
light: N2 dissociation from Sun light is for example an important process on Titan,
where 98% of the upper atmosphere is composed of nitrogen [21].
Nitrogen plays therefore a crucial role in many environments and the study of its
electronic structure can shed light on a number of important processes in nature. In
the next two sections, I will give a brief overview of the electronic structure of the
ground state of the molecule and focus on the autoionization dynamics of N2.

1.3.1 The ground state of N2

Hartree-Fock computations [22,23] show that the ground state wavefunction has a 1Σ+
g

symmetry. The occupation of the molecular orbitals is

1σ2
g1σ

2
u2σ

2
g2σ

2
u1π

4
u3σ

2
g (1.26)
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Figure 1.3: Electronic occupation of molecular orbitals in N2. Image adapted from [22].

Note that the energy ordering of the electronic states strongly depends on the dis-
tance between the two ionic cores. The latter configuration is given for its equilibrium
distance R0 = 1.12 Å.

1.3.2 Potential energy curves of N+
2

The potential energy curves for the N+
2 ion are depicted in figure 1.4. The curves are

taken from [22,24].
In this work only the first three ionic states are going to be considered. The ground
and the first excited state, labeled as X and A, of N+

2 correspond to the removal of an
electron from the two outermost molecular orbitals, the 3σg and 1πu respectively. The

Term I [eV] Configuration
X2Σ+

g 15.5 3σ−1
g

A2Π+
u 16.9 1π−1

u

B2Σ+
u 18.9 2σ−1

u

Table 1.1: Molecular term, ionization thresholds (I) at the equilibrium distance R0 = 1.12
Å and dominant electronic configuration for the first three ionic states of N+

2 . Taken from
[22, 24].
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second excited state B of the N+
2 ion corresponds to the removal of an electron from the

2σu orbital. The ionization thresholds at the equilibrium distance R0, the electronic
configuration and the molecular term of the ionic states is reported in table 1.1. Note
that, due to the strong correlation between them, the reported configurations are the
dominant ones in the numerical calculations.

Figure 1.4: Left: potential energy curves as a function of the internuclear distance in N+
2 .

Image adapted from [21,22]. Right: the dominant electronic configuration for the ionic states
X, A and B of N+

2 at R0 = 1.14 Å.

1.3.3 Autoionization in N2

Autoionizing resonances in N2 were first studied by Hopfield in 1936 [25], who observed
two series of spectral lines converging to a common ionization threshold (figure 1.5).
These two series, which Hopfield named the absorption and ”emission” series, corre-
spond to the absorption of an XUV photon leading to excitation of an electron from
the X1Σ+

g ground state of N2 to highly excited Rydberg states converging to the B2Σ+
u

ionic core, which then autoionize.
The most complete ab initio calculations to date from Raoult et al. [13] assign the
absorption series to excitation of the Rydberg series (B2Σ+

u )n‘d′σg, where the quotes
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indicate d as the dominant component of the orbitals resulting from significant mixing
of ndσ with (n + 1)sσ states. This series appears as absorption peaks with slightly
asymmetric profiles, corresponding to high values of the Fano parameter q. The emis-
sion series resonances exhibit instead a dip in the absorption cross section and are
called window resonances, corresponding to low q values.
Although high quality spectroscopical data in the XUV region from 17.0 eV to 18.9
eV were recorded as recently as 2011 [26] and ab initio calculations suggest that the
emission series is a result of two Rydberg series overlapping, the ndπg and (n+1)′s′σg,
the assignment of the features remains non-trivial as the calculated profiles do not
match exactly the recorded experimental data [13]. Specifically, the complex lineshape
of the window resonances cannot be fit by a simple Fano profile but rather stems from
the superposition of the two contributing states. Furthermore, rotational structure
suggesting coupling of rotational degrees of freedom between the ndπg and (n+ 1)′s′σg
states was observed by Huber et al. in 1993 [27] and such coupling was not included
by Raoult et al.

Figure 1.5: Synchrotron absoprtion spectrum of N2 in the XUV region 17.0-18.9 eV with the
line assignments. Highlighted in the red box is the Fano resonance at 17.33 eV investigated
in [5]. Image adapted from [26].

Although synchrotron experiments can resolve very fine structures in the absorption
and photoelectron spectrum of molecules, in the case of complex line profiles a com-
plementary approach is needed. For example in the case of the window resonances in
the XUV region of N2 where two Rydberg series seem to overlap, a time-domain ap-
proach can identify the individual contributions to the total profiles, providing further
insight into the electronic dynamics. Recently, a time-, angular- and energy-resolved
photoelectron spectroscopy experiment was performed on the Fano resonance at 17.33
eV of N2 with the aim of disentangling the complex dynamics from which the window
profiles arise [5]. In the next chapter, I will therefore first introduce the basic con-
cepts of time-resolved techniques to then discuss in detail the results obtained from
this experiment.
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Chapter 2

Time-resolved dynamics of
autoionizing states

The most widely used configuration for time-domain experiments to study molecular
dynamics is a pump-probe setup employing femtosecond pulsed lasers.
I will introduce the pump-probe method in the first section of this chapter, focusing
on its basic concepts. Two of the most important time-resolved techniques, transient
absorption and photoelectron spectroscopy 1, will be then discussed. I will give an
intuitive picture of their theoretical concepts and experimental implementation, with
a focus on the definition of the observables that are detected in such experiments.
In the second and last part of this next chapter I will discuss the results of a recently
performed time-resolved photoelectron experiment on the Fano resonance at 17.33 eV
in N2 [5], where two electronic states participate in the complex dynamics. The results
suggest that the interference stabilization is playing a role.

2.1 Pump-probe techniques

2.1.1 The pump-probe method

In a pump-probe experiment, two short laser pulses are sent on the atomic or molecular
sample with a certain temporal delay τ with respect to each other. The first pulse -
the pump - triggers the dynamics by exciting the system and starting the clock ; after
some time τ , the second pulse - the probe - stops the clock by taking a snapshot of
the system’s dynamics, projecting them onto a certain final state. As a result, by
scanning the temporal delay, we can add together all the recorded snapshots to form a
movie of the phenomena on its natural timescale. The difference between time-resolved
photoelectron and transient absorption spectroscopy (TRPES and TAS respectively) is
the kind of snapshots that are taken: in TRPES, the movie is put together by looking

1Note that photoelectron spectroscopy requires XUV wavelengths as sufficient photon energies have
to be used to ionize molecules.
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at the ejected electrons from the ionized sample, while in TAS the spectrum of the
probe field after the sample is detected.
In figure 2.1 I depict a typical pump-probe experiment in the form of a common table-
top setup in an ultrafast laser laboratory. A short laser pulse is split in two beams
- the pump beam and the probe beam - by means of a beam splitter (BS) and sent
through two different optical paths. Along one of the paths, two mirrors M3 and M4

are mounted on a motorized stage and used to control the difference in the optical path
∆L of the probe beam with respect to the pump. The arrival of the probe beam on
the sample is thus delayed by a time τ = ∆L/c. Finally, a detector D records a signal
as a function of the scanned delay S(τ), which contains the features of the dynamic
process we seek to investigate in real time. In figure ideal detectors are depicted: in
a TAS experiment, the detector collects the light after the sample, i.e. the absorption
spectrum; in a PES experiment, the detector collects the electrons and measures kinetic
energy and emission angles.
It is instructive to give a more intuitive description of a pump-probe experiment - a
wavepacket point of view. Time resolved techniques such as photoelectron spectroscopy
and transient absorption spectroscopy rely on the creation and detection of wavepackets
on the excited potential energy surfaces of the system under study (see figure 2.1).
The typical pump-probe experiment can then, from this point of view, be separated in
three main steps [28]: i) the creation of a coherent superposition of excited molecular
or atomic eigenstates by the pump pulse, i.e. the wavepacket; ii) the free evolution of
the wavepacket along the potential surfaces of the system; iii) the projection of the
wavepacket on the target state |Ψn〉 - effectively the screen on which we project the
microscopic movie.
In the next sections I will introduce two of the most frequently used pump-probe
techniques: transient absorption and time-resolved photoelectron spectroscopy. Both
techniques have their advantages as well as disadvantages; I will therefore introduce the
reader to their basic principles and try to give some guiding lines on how and when to
use these powerful tools in order to best observe the different properties of the system
under study.

2.1.2 Transient absorption spectroscopy

Transient absorption spectroscopy (TAS) relies on recording spectrally-resolved absorp-
tion of atoms, molecules or solids in their excited states. The excited states, prepared
by a pump pulse at time t0, evolve until the probe pulse arrives and makes a snapshot
of the absorption spectrum at time t0 + τ .
While the temporal resolution of a transient absorption setup is given by the control of
the delay τ and the coherence between the two fields, the spectral resolution is deter-
mined by the characteristic spectral features of the system itself [29]. It is important
to note that since time is observed indirectly via the delay τ , transient absorption
spectroscopy allows for simultaneous recording of fast dynamics and narrow spectral
features without any violation of the time-energy uncertainty [29]. Hence, a transient
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Figure 2.1: Left: a typical pump-probe setup is depicted. Mirrors are denoted by the letters
M, the detectors by D, beam-splitters by BS, High-Harmonic Generation by HHG. The two
detection schemes, the TAS and PES, detect respectively the spectrum of the probe pulse and
the photoelectrons and record difference signals when the sample is excited (red lines) or not
(blue lines). On the bottom left, the sequence of pump and probe pulses. Right: a wavepacket
point of view of a pump-probe experiment is depicted. i) Pump pulse creates a wavepacket.
ii) Evolution of the wavepacket according to the TDSE. iii) Probing of the wavepacket by
projection on a final target state by the probe.

absorption measurement can provide high-resolution data both in the spectral and time
domain.
Experimentally, one measures the intensity of the incident and transmitted light, re-
spectively I0(λ) and I(λ). The absorbance A(λ) of each probe pulse is then defined by
the Beer-Lambert law

A(λ) = log
I0(λ)

I(λ)
(2.1)

The change in absorbance induced by the pump pulse can then be expressed as

∆A(λ) = Ap(λ)− Au(λ) = log
Iu(λ)

Ip(λ)
(2.2)

where the indexes p and u refer to the pumped and unpumped sample.
From a theoretical point of view, the absorption probability per unit frequency at a
given frequency and delay τ between the pulses can be expressed as [29]:

S(ω, τ) = 2 Im
[
d̃(ω, τ)Ẽ∗(ω, τ)

]
ω > 0 (2.3)

where d̃(ω) is the Fourier transform of the dipole response function of the atom or
molecule and Ẽ(ω, τ) is the two-color field. It is clear that positive or negative ωS(ω)
correspond to gained or lost energy per unit frequency by the irradiated sample. We
can also define a generalized cross-section

σ̃(ω) = g 4π αωIm

[
d̃(ω)

Ẽ(ω)

]
(2.4)
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where g is the number of active electrons and α = 1/c. Both quantities, the cross-
section σ̃(ω) and the response function S(ω), are linked to the imaginary part of the
dipole spectrum - the dissipative part of the spectral response of the system - which is
a quantity that is therefore necessary to simulate theoretically in a TAS experiment.
Due to its many advantages and its relatively easy setup, TAS has been mastered and
used over the years to study fast, nuclei-initiated processes like molecular vibrations.
Still, the technique has been largely blind to electron dynamics until recently, as re-
searches struggled to find a suitable light pulse to track transient electronic signals
on the hundreds attoseconds to few femtoseconds timescale. The advent of High Har-
monic Generation (HHG) and attosecond pulses provides a broadband, coherent and
short pulsed light source that has become available to many laboratories over the past
decade and a half.
Since attosecond pulses are produced by the non-linear interaction of an IR few-cycle
field with a noble gas such as Kr [30], they can be precisely synchronized to the oscil-
lations of the carrying IR field. Therefore, using the attosecond XUV pulse together
with a clone of the IR field, one can perform two-color attosecond transient absorption
(ATAS) experiments on the target system that can be pumped and probed by either
field, although the low conversion efficiency of HHG makes it difficult to realize the
ideal experiment where two XUV pulses serve as pump and probe.
In its first application to study autoionizing resonances, Z. Chang et al. used ATAS
to resolve in time the autoionization of the 3s3p6np 1P series in Ar [16]. By scanning
the delay between a short 130 as XUV pulse and a longer 23 fs NIR pulse, they were
able to show control over the peak, linewidth and shape of the Fano resonances by
modifying the dipole response with the latter one after excitation by XUV. Moreover
recent theoretical results, confirmed experimentally by ATAS, showed that the IR field
induces a phase shift which effectively changes the profile of an auto-ionizing resonance
from a Fano one to a Lorentzian [12].

2.1.3 Photoelectron spectroscopy

The principle underlying photoelectron spectroscopy (PES) is the famous photoelectric
effect explained by Einstein in his annus mirabilis [31]: a light source with sufficient
photon energy ~ω ionizes an atom or a molecule and the kinetic energy of the ejected
electrons is measured by a detector. If the electron was initially in a state with binding
energy Ei, conservation of energy requires the kinetic momentum of the electron in the
continuum to be

Ekin = ~ω − Ei ≥ 0 (2.5)

By measuring the kinetic energies of the outgoing electrons, we can therefore determine
the binding energy of the orbital from which they were ejected [15].
In a pump-probe experiment, the pump pulse creates a wavepacket which evolves for
a time τ :

|Ψ(τ)〉 =
∑
i

aie
−iωiτ |ψi〉 (2.6)
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The probe pulse Ep then interacts with the wavepacket and projects it onto a certain
final state |Ψf〉. The signal one measures is then given by

S(τ) =
∣∣∣〈Ψf | d̂ · Ep |Ψ(τ)〉

∣∣∣2 (2.7)

Choosing this final state |Ψf〉 as an ionization continuum as in PES has its advantages,
including the fact that the detection of charged particles is highly sensitive and that
the final state in an ionization process is often a stable cation or neutral species which
makes the screen on which we project our wavepacket a good template for the micro-
scopic movie [28].
Moreoever, by detecting the kinetic energies together with the emission angles of the
photoelectrons one can retrieve informations on the shape of the orbitals. Both ob-
servables, the kinetic energies and the emission angles of the electrons, can be detected
using a Velocity Map Imaging (VMI) spectrometer [32].
A typical VMI setup and its principles are depicted in figure 2.2. Using a VMI it
is possible to reconstruct the 3D velocity map distribution of the emitted charges
(ions or electrons) by using electrostatic lenses which accelerate the particles toward a
micro-channel plate, effectively projecting their velocity distribution onto a 2D plane.
Particles with same perpendicular components of their velocity with respect to the
normal axis to the 2D detector will end on the same spot on the detector. The detec-
tor then sees the integrated distribution along the axis normal to the plane of the 2D
detector ẑ:

F (x, y) =

∫ ∞
−∞

f(r, y)dz (2.8)

Using r2 = x2 + y2 one then obtains the following expression for the 2D projection

F (x, y) = 2

∫ ∞
|x|

f(r, y)r√
r2 − x2

dr (2.9)

This is the so-called Abel transform of a 3D distribution. In order to obtain the
original distribution, we thus have to find the inverse Abel transform. A variety of
computational methods have been designed over the years to solve this problem but,
as a common feature, they all rely on enforcing a cylindrically symmetry on the distri-
bution of the particles’ velocities. This is usually done by marking one spatial direction
by choosing a laser with a polarization parallel to the detector screen.
From a theory standpoint, while the energy of the emitted electron is determined by
conservation of energy, its angular distribution is found by expanding its wavefunc-
tion in the basis of spherical harmonics, the so-called partial waves. Superposition of
different partial waves will in turn result in different resulting interference patterns
in the angular-resolved photoelectron spectrum. Analyzing the latter together with
the knowledge of the available transitions determined by the selection rules, one can
therefore reconstruct the symmetry of the molecular or atomic orbital from which the
electrons were ejected.
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SPECTROSCOPY OF A FANO RESONANCE IN N2

It is clear that by combining the angular- and energy-resolution provided by the VMI
with the time-resolution of a pump-probe technique, where differential images of the
electrons’ momentum distribution are recorded as a function of the delay between
pump and probe pulse, we can retrieve very detailed information on the dynamics in
the molecular target under study.
This kind of time-, angular- and energy-resolved experiment was recently performed
on the Fano resonance of N2 at 17.33 eV with the aim of identifying and imaging the
transient Fano dynamics arising from the two involved electronic states [5]. In the
next part of this chapter I will thus go through this experiment and its results as it will
become our starting point for the application of the theory of interference stabilization
to autoionizing states in molecules.

Figure 2.2: Panel a): setup of a VMI. A laser ionizes the sample and the charged particles
are accelerated by the concentric lenses toward the detector. While traveling due to their
kinetic energies they expand in the Newton sphere, which is then projected on the detector
screen. Panel b): the initial distribution f(r, y) and its Abel transform F (x, y). All images
are adapted from [33].

2.2 Time-, angular- and energy-resolved photoelec-

tron spectroscopy of a Fano resonance in N2

In their paper from 2016 [5], a group of researchers from Berlin and Milan studied the
Fano resonance of N2 at 17.33 eV (figure 2.3) via time-, angular- and energy-resolved
photoelectron spectroscopy. As mentioned in the previous chapter, ab initio calcula-
tions predict two electronic states contributing in this spectral region: the 3dπg and
the 4‘s′σg attached to the B2Σ+

u ion core. The angular-resolution provided by the VMI
spectrometer together with the time-resolution of a pump-probe method helped to
disentangle their contributions to the detected signal. For two resonances of different
symmetry one expects to observe a time-dependent dynamics in the angles of emission
of the electrons.
In this section, I first introduce briefly the experimental setup designed to study the
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Fano resonance of N2 and later on discuss the results which, as I will show later, indi-
cate the presence of the interference stabilization effect.
The setup is depicted in figure 2.3. A time-delay compensating monochromator beam-
line was used to spectrally filter XUV radiation generated in a HHG cell filled with
argon gas. By adjusting the parameters of the two diffraction gratings, the monochro-
mator can tune the XUV radiation wavelength by selecting the harmonic order [34].
It was thus possible to produce an XUV pulse centred at 17.5 eV and a FWHM of 0.5
eV, covering therefore the energy range of the spectrum of N2 where the 3dπg member
of the Hopfield emission is located. While the XUV radiation populates the excited
electronic states, their dynamics is probed by a second IR pulse centred at 795 nm with
a 90-nm bandwidth and duration of 20 fs which ionizes the states before they undergo
autoionization. The emitted electrons are then recorded by a VMI which allows for
the reconstruction of their 3D momentum distribution via a BASEX Abel inversion
algorithm [35].
The experimental results are shown in the following figures 2.4, 2.5. On the left of
figure 2.4, a slice through the 3D photoelectron momentum distribution is shown. The
image is the result of the subtraction between XUV-only and XUV+IR images and is
plotted as a false color plot. Red color corresponds to an increase of the signal when
the IR is present while blue indicates depletion. The ring labeled X0 corresponds to
the photoelectrons emerging in the X2Σ+

g (ν = 0) continuum channel of N+
2 , where ν is

the vibrational state of the ionic core. The X0 channel corresponds thus to the lowest
vibrational level of the ground state of N+

2 . Due to the small displacement between
the neutral and ionic X potential energy surface, no other vibrational progressions of
the electronic state are observed. The outermost ring, labeled X0+IR, corresponds to
the sideband obtained by adding one IR photon to the electron in the X0 channel.
The A0,1 rings correspond to the A2Πu(ν = 0, 1) continuum channels of the next ionic
state; here the vibrational channels are instead active as the potential energy surface
is slightly shifted with respect to the ground state of N2. The corresponding sideband
features overlap with the X0 channel and are thus not visible. Finally, the Ry+IR
feature corresponds to the IR-assisted ionization of the excited 3dπg + 4‘s′σg state;
the researchers thus concluded that the IR pulse is able to ionize the electronic states
before autoionization takes place.
The time-dependent signals are shown in the panel b) of figure 2.4 as a function of
the kinetic energy of the photoelectrons. Time zero here corresponds to the pump and
probe pulses arriving at the same time on the sample. While the A0,1 and X0 features
are symmetric with respect to time zero, the Ry+IR feature extends toward positive
delays. This is expected for an electronic state with a certain lifetime and is therefore
a further proof that this feature corresponds to the autoionizing state.
In order to investigate the dynamics of the autoionizing feature, the angular-resolution
of the VMI detection is exploited. In the case of ionization by two photons with linear
polarizations, the XUV and the IR in this case, the angular distributions from unaligned
molecules can be described by two asymmetry parameters β2,4, which take into account
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2.2. TIME-, ANGULAR- AND ENERGY-RESOLVED PHOTOELECTRON
SPECTROSCOPY OF A FANO RESONANCE IN N2

Figure 2.3: Panel a): the HHG generated and spectrally filtered XUV radiation excites the
N2 molecule which, after a delay τ , is ionized by the IR pulse. Panel b): the absorption
spectrum of N2 is shown in blue with the corresponding labeled members of the absorption
and emission series. The pink shaded region depicts the spectrum of the XUV radiation used
in the experiment. Panel c): the beamline. The XUV radiation is filtered by the monochro-
mator, where the positions and angles of the diffraction grating with respect to the axis of
propagation of the light are adjusted, to select the harmonics generated in the HHG chamber.
The IR radiation co-propagates along the beamline and together with the XUV is focused in
the interaction region on the sample. The resulting photoelectrons are then recorded by a VMI
spectrometer. All pictures are adapted from [5, 6, 21].

the weight of different spherical harmonics in the photoelectron wavefunction [5]:

σ(θ, E) =
σ0(E)

4π
[1 + β2(E)P2(cos θ) + β4(E)P4(cos θ)] (2.10)

where σ(θ, E) is the doubly differential cross section, σ0(E) the cross-section integrated
over all angles, P2,4 are the Legendre polynomials and finally E and θ are the energy
and polar angles (with respect to the polarization axis) of the photoelectrons. The
asymmetry parameters of the Ry+IR feature are plotted in the bottom right of figure
2.5. When β2 increases, angular distributions are peaked along the polarization axis.
The time dependence of the asymmetry parameters is another strong hint at dynamics
arising from more than one electronic state, as one single state should not change its
emission angles over the scanned delay.
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SPECTROSCOPY OF A FANO RESONANCE IN N2

Figure 2.4: Image a): a slice through the 3D momentum distribution of the photoelectrons.
Image b): the time-dependent signal integrated over all angles of the labeled features cor-
responding to the left plot. The x-axis is the kinetic energy of the photoelectrons and thus
corresponds to the length of the ray drawn from the center of the 2D projection of the distri-
bution. All figures are taken from [5, 6].

In order to gain further insight and confirm this hypothesis, the angular distributions
of the feature integrated between 0.1 and 0.3 eV were plotted as a function of time in
panels a) and b) of figure 2.5. In order to remove any effect coming from the time-
dependent signal intensity, a singular value decomposition (SVD) was performed [36].
This procedure helps removing additional noise (as shown in the plots) and reveals the
main components of the total signal as a function of time. It is clear that at time zero
the angular distribution is rather uniform while for positive delays the signal peaks at
0◦ and 180◦. The two principal components to the signal are then plotted in panel c) of
figure 2.5. Their associated decay was then fitted to an exponential decay convoluted
with a Gaussian cross-correlation function, yielding lifetimes of 20 ± 5 fs and < 10 fs
for the peaked and uniform components respectively (blue and green lines in panel c)).
Summing up, the experimental results and the analysis of the emission angles clearly
indicate that two electronic states are at play in the Fano resonance at 17.33 eV of N2.
While this result is in agreement with the previous ab initio calculations as mentioned
earlier in the thesis, discrepancies between calculated and experimental resonance pro-
files remained [13].
This experiment suggests that the resonance profile is a result of a superposition be-
tween two electronic states, the 3dπg and 4′s′σg, interacting via a common contin-
uum. In the theoretical calculations, the molecular axis was kept fixed and thus no
rotationally-induced couplings were included; furthermore, the theoretically calculated
line widths do not correspond to the observed lifetimes of the electronic states. In a later
published paper [27], modulations of the absorption profiles of N2 with rotational tem-
perature was observed, even though the experiments were not performed in the same
energy range of this particular Fano resonance. Still, rotationally-induced couplings
could be at play here as the rotations of the molecule could allow for symmetry-breaking
coupling between the two states and continua of different symmetry. Therefore, the
mixing of two discrete states via a common continuum, a known effect in literature
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2.2. TIME-, ANGULAR- AND ENERGY-RESOLVED PHOTOELECTRON
SPECTROSCOPY OF A FANO RESONANCE IN N2

Figure 2.5: Panel a) and b): the angular distributions’ integrated signal between 0.1 and 0.3
eV is shown as a function of time before (a) and after (b) SVD decomposition. Panel c): the
time-dependence of the asymmetry parameters β2,4. Panel d): the decay-associated signals
to the angular distribution after SVD. All figures are taken from [5, 6].

commonly called interference stabilization or interference narrowing [7, 10, 11, 37, 38],
could explain the discrepancy between the widths and the decay times. When two
closely lying resonances with overlapping width interact with a common continuum,
provided that the coupling is sufficiently strong, they can be transformed into a system
of two resonances located around the same energy, one of them being narrow (long
lifetime) and the other one broad (short lifetime) [7]. Raoult’s calculation indeed yield
a separation between the 4sσg and 3dπg resonances of just 40 meV, smaller than the
60 meV width of both [13]. Interference stabilization should then be at play and thus
further investigation into the dynamics of the states from this point of view could re-
solve the discrepancies between theory and experiment while also providing a simple
interpretation of the arising complex lineshape.
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Chapter 3

Two-state interference stabilization

Introduction

In the previous two chapters, I have briefly overviewed the theory of autoionization in
molecules and focused specifically on the Fano resonance of the ”emission” series in
the nitrogen molecule at 17.33 eV.
In this chapter, I will first introduce briefly the interference stabilization effect, focusing
on the existing literature. I will then show how the effect, which was originally formu-
lated for the case of two or more states coupled to one continuum, can be expanded
to include additional continuum channels. Specifically, I will give analytical results for
the case of two states coupled to an arbitrary number of continua and show what new
effects and situations can be achieved. These results will be then applied in the final
chapter, where I will show how the novel theory can be applied to the case of N2. The
results of this chapter and the next one were published in the Faraday Discussions [6].

3.1 Interference stabilization - a brief overview

The interference stabilization effect has been long known both experimentally and
theoretically [7, 10, 11, 37, 38] and can be applied to different physical systems owing
to its very general requirements. The most complete theoretical study of interference
stabilization to date is the work done by Popov and Fedorov [7, 8, 10], where two or
more discrete states are coupled to a common continuum.
Consider the system in figure 3.1. To explain this effect, we can focus just on the
excited part of the system, i.e. we forget about the ground state for now. The two
discrete states are separated in energy by ∆E = |E2 −E1| and can both decay toward
the continuum: the discrete-continuum coupling can be provided by the configuration
interaction, like in autoionization, or also by external fields as in the case of laser
induced continuum structure (LICS) [39]. Note that in the latter case the two states
do not need to have an autoionizing character as the continuum can be reached by the
one-photon laser-assisted transition. Nonetheless, regardless of the type of interaction
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3.2. THEORY OF INTERFERENCE STABILIZATION

for the effect to occur we only need an available discrete-continuum transition for two
or more states toward a common decay channel.
In an energy-domain picture, the two states have corresponding line profiles of the
two resonances with a width given by the Fermi Golden Rule (FGR) [40, 41], i.e.
ΓnE = 2π|VnE|2, where I use atomic units and VnE is the matrix element corresponding
to the transition between the state |n〉 and the continuum |E〉. Provided that the states
lie close in energy, the two profiles can overlap. Now, if the width of the resonances is
bigger than their energy separation, i.e. when

ΓnE > ∆E (3.1)

a coherent repopulation of the bound states after ionization, owing to the transition
En → E → Em (where E denotes the continuum) can occur. As a counter-intuitive
result of the effect, the lifetime of one of the new eigenstates of the Hamiltonian,
superposition of the field-free ones, increases for increasing value of ΓnE. This fact can
be easily seen from the perspective of the quasi-energies of the dressed systes: while the
real part of the quasi-energies corresponds to the energy around which the resonances
are centred, their imaginary part corresponds to their decay (figure 3.2). When the
coupling strength is increased, after the branching point Γ = ∆E the width of one of
the eigenstates becomes increasingly smaller while the other one enlarges. Since the
width of the line profiles is connected to their lifetime through τ = 1/Γ, one of the
superposition states becomes stabilized at the expense of the other.
The pioneering work by Fedorov, Popov and others, although already rich in interesting
effects and conclusions, does not consider the more realistic case where the states are
coupled to more than one continuum with different strenghts.
In the next section I thus include in the framework of the existing theory the case
where a number N of continua are coupled to two discrete states and analyze the novel
effects this generalization leads to.

3.2 Theory of interference stabilization

The following derivation follows the time-dependent approach I opted for in describing
the interference stabilization effect in our recently published paper [6]. In this thesis
work, I give a more comprehensive description and derivation of the effect, together
with previously unpublished results.
The system I am considering is schematically depicted in figure 3.1. It consists of a
ground state and two closely lying autoionizing states above the ionization potential.
The AIS are supposed to be coupled to an arbitrary number of continua N . The system
is initially in the ground state |φg〉 and is excited by a ultrashort pulse at time t0 = 0.
The absorption of a photon leads to either direct ionization to any of the continuum
channels Ej or excitation of the two AIS. The latter once populated can then decay to
the continua with a rate Γ = 2π|VnE|2.
I will use the atomic units if not otherwise specified. The wavefunction of the system
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3.2. THEORY OF INTERFERENCE STABILIZATION

Figure 3.1: The dynamics of the system under study. An initial short and sufficiently broad
laser pulse interacts with the ground state at time t = 0, populating the auto-ionizing states
and inducing a time-dependent dipole response in the system, while directly transferring part
of the population in the ionization continuum. The autoionizing (or dissipative) nature of
the populated states results in a damped oscillatory response to the external field, which de-
cays with a certain lifetime τ together with the remaining population in the bound-states.
The reader must not be tricked into thinking that this picture represents the effect of inter-
ference stabilization, since the effect consists in an enlargement or shrinking of the lifetime
of the states and induces substantial changes compared to the standard dynamics of a Fano
resonance.

in the eigenstates of the field-free Hamiltonian is

|Ψ(t)〉 = cg(t)e
−iEgt |φg〉+ e−i(Eg+ωXUV )t

[∑
i=1,2

ci(t) |φi〉+
N∑
j=1

∫
dEjcEj(t) |φEj〉

]
(3.2)

where I denote the continuum by Ej. Eg and ωXUV are respectively the ground state
energy and the frequency of the XUV pulse. In this thesis work, I will try to model
only the static absorption of a photon: the Hamiltonian of the system is thus

H(t) = Ĥ0 + V̂ − d̂ · EXUV (t) (3.3)

where Ĥ0 is the ’free’ Hamiltonian, V̂ the configuration interaction coupling the discrete
states |i〉 to the continua and d̂ and EXUV (t) are the dipole operator and the XUV field.
The latter is taken to be

EXUV (t) = FXUV f(t)eiωXUV t + c.c. = AXUV (t)eiωXUV t + c.c. (3.4)

where |FXUV |2 is the peak intensity of the field and f(t) is the time-dependent pulse
envelope. In order to reconstruct the dynamics, one has to solve the time-dependent
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3.2. THEORY OF INTERFERENCE STABILIZATION

Schrödinger equation
i∂t |Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 (3.5)

Inserting the wavefunction (3.2) in the TDSE and using the Rotating Wave Approxi-
mation (RWA), we can ignore the fast oscillation of the counter-rotating terms of the
XUV field and obtain the following system of coupled differential equations for the
probability amplitudes:

iċg(t) = −
∑
i

ci(t)
dgi
2
AXUV (t)−

∑
j

∫
dEjcEj(t)

dgEj
2
AXUV (t) (3.6)

iċi(t) = ∆ici(t)− cg(t)
dig
2
A∗XUV (t) +

∑
j

∫
dEjcEj(t)ViEj (3.7)

iċEj(t) = ∆EjcEj(t)− cg(t)
dEjg

2
A∗XUV (t) +

∑
i

ci(t)VEji (3.8)

where I have set Eg = 0 and dig = 〈i| d̂ |g〉, ViEj = 〈i| V̂ |Ej〉 are the dipole and
configuration interaction matrix elements and ∆i = Ei− ωXUV , ∆Ej = Ej − ωXUV are
the detunings. The latter are then included in the transformation ai(t) = ci(t)e

i∆it.
The resulting system of integro-differential equations does not have a straightforward
analytical solution. I will thus proceed by adiabatically eliminating the continuum, a
common approximation in literature when dealing with such systems [6,7,10]. This is
done by first formally integrating the continuum amplitudes as follows

aEj(t)− aEj(t0) = i

∫ t

t0

dt′cg(t
′)
dEjg

2
A∗XUV (t′)ei∆Ej

t′ − i

∫ t

t0

dt′
∑
i

ai(t
′)VEjie

i(∆Ej
−∆i)t

′

(3.9)
where, if the system was initially in the ground state, aEj(t0) = 0. The latter expression
is then substituted into the equations for the ground and discrete states. The adiabatic
approximation consists in assuming that the continuum is flat, i.e. the dipole matrix
element coupling the states to the continua do not depend on the energy Ej. This
allows one to change the order of integration once the matrix elements are taken out of
the integration over the continuum energies. The resulting integral over the energies is∫ ∞

Ipj

dEje
i∆Ej

(t′−t) (3.10)

where Ipj is the ionization threshold. By changing the variable from the continuum
energy to the detuning ∆Ej , we would have an integral over the range [Ipj −ωXUV ,∞].
Taking in account that I want to model the photoelectron experiment N2 experiment,
where the XUV photon energy was 17.5 eV, we are therefore roughly 2.2 eV above
the ionization threshold of N2. The integrand thus oscillates with a period of around
1.9 fs. Since we are not interested in such fast dynamics, we can safely let the lower
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3.2. THEORY OF INTERFERENCE STABILIZATION

integration limit go to −∞. This results in terms proportional to 2πδ(t′ − t), which
then give the following equations for the amplitudes of the discrete states:

iċg(t) = −
∑
i

ai(t)e
−i∆itAXUV (t)

dgi
2

(
1− i

qi

)
− icg(t)

∑
j

π|dEjg · AXUV (t)|2 (3.11)

iȧi(t) = −cg(t)ei∆itA∗XUV (t)
dig
2

(
1− i

qi

)
− iai(t)

∑
j

Γij − ial(t)e
−i(∆l−∆i)t

∑
j

Γijl

(3.12)
where l 6= i refer to the discrete states and I have introduced the rates associated with
the different transitions:

Γij = 2π|ViEj|2 |i〉 → |Ej〉 (3.13)

Γijl = 2πViEjVEj l |i〉 → |Ej〉 → |l〉 (3.14)

It is clear that while the bound state |φi〉 decays in time at a total rate Γi =
∑

j Γij,
it also interacts with the other resonance via Γil =

∑
j Γijl. Furthermore, I have also

introduced the Fano asymmetry parameters [2]:

qi =
dgi

2π
∑

j dgEjViEj
(3.15)

which give an estimate of the relative strength between the direct and indirect tran-
sitions. Notice that the total Fano parameter qi can be expressed as a sum of the
parameters for each continuum channel qij as

qi =

(∑
j

1

qij

)−1

(3.16)

qij =
dgi

2πdgEjViEj
(3.17)

Up to now I did not specify the temporal shape of the field f(t). If the pulse is assumed
to be very short in time compared to the relevant timescales of the system, it looks
reasonable to model it as a δ-like pulse, that is EXUV (t) = FXUV δ(t)e

iωXUV t + c.c.
Assuming that the ground state is left mostly unperturbed by the XUV pulse, we can
set cg(t) ' cg(t0 → −∞) = 1. The evolution of the bound state amplitudes may then
be expressed as

ai(t) =

{
0 for t ≤ 0

ai(t) for t > 0
(3.18)

where the initial conditions set by the field are

ai(t→ 0) = iFXUV
dig
2

(
1− i

qi

)
(3.19)
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For later times t > 0, the evolution is governed by the decay toward the continuum:

iȧi(t) = −iai(t)
∑
j

Γij − ial(t)e
−i(∆l−∆i)t

∑
j

Γijl (3.20)

where l 6= i and i = 1, 2. The system can now be solved by looking for a non-trivial
solution of the form ai(t) = fie

i(∆i−γ)t, which leads to a quadratic equation for the
quasi-energies γ having solutions

γ± =
1

2

[
(E1 + E2)− i(Γ1 + Γ2)±

√
∆
]

(3.21)

∆ = [∆E + i(Γ2 − Γ1)]2 − 4

(∑
j

√
Γ1jΓ2j

)2

(3.22)

where ∆E is the energy separation of the quasi-bound states. Due to the presence of
dissipative terms iΓ, the population of the bound-part of our system is in general not
preserved and the quasi-energies of the non-Hermitian Hamiltonian γ± are complex
quantities. Their interpretation can be easily understood given that their real part
represents the energy around which the associated resonances are centered while the
imaginary part is related to the width of such resonances (or from a time-domain
perspective, to the inverse of their lifetime). Therefore, the smaller the imaginary
part, the sharper the resonance and the longer the associated decay time.
To understand the effect of interference stabilization, it is important to notice that
when the total rate exceeds the energy gap, i.e. when Γ > ∆E, the square root term
becomes purely imaginary and will therefore contribute only to the decaying part of the
amplitudes, effectively shrinking the width of one of the resonances while making larger
the other one. For increasing coupling strength, this results in the stabilization against
ionization of one of the resonances. This effect is precisely the so-called interference
stabilization phenomenon.

3.2.1 Balanced and unbalanced cases of interference stabiliza-
tion

Now that the expressions for the quasi-energies of the system are known (equation
3.21), we have the tools to analyze their dependence on the rates Γij, that is the
configuration interaction that leads to the decay of the AIS. It is interesting therefore,
following Fedorov and Popov treatment [7,10], to plot the quasi-energies as a function
of the total rate Γ =

∑
Γij and analyze the different possible effects that arise in such

a system.
In the simplest case, the coupling strengths of the two states are the same to all
continua, i.e. Γij = C (where C is a constant) and Γ1 = Γ2. In this case, there is
nothing differentiating one continuum channel from the other and the system behaves
as if there was just one continuum. In panel a) of figure 3.2, the system behaves
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Figure 3.2: Left: schematic diagrams depicting the three cases of interference stabilization.
The size of the arrows is meant to represent the strength of the interaction. Right: resonance
positions Re(γ±) (black dotted line) and effective resonance boundaries Re(γ±)± Im(γ±) (red
and blue shaded regions) for three sets of parameters describing two discrete states coupled
to two continua, plotted against the total rate Γ. a) Balanced case: the two discrete states
have identical coupling strengths to the two continua, i.e. Γ1E1 = Γ2E1 and Γ1E2 = Γ2E2. b)
Partially balanced case: the coupling strengths of both discrete states to the two continua
are balanced (Γ1E1 = Γ1E2 and Γ2E1 = Γ2E2), but the one resonance is coupled to the continua
weaker than the other one (Γ1 < Γ2). c) Unbalanced case: the coupling constants of two
discrete states are different for each continuum.

exactly as reported already in literature [7], confirming the correctness of our results.
I denote this case as balanced case . In a more realistic case though, the coupling
strength between the AIS and the continua are not the same. This leads us to two
possible configurations: the partially balanced and unbalanced cases of interference
stabilization.
In the first one, the coupling strength of each AIS is the same for all continua, but
their total rates differ. That is, Γ1 6= Γ2 but Γij = ΓiC ∀j. In the latter case instead,
the coupling strength of the AIS are different for each continuum. The corresponding
diagrams and quasi-energies plots, showing the width and the resonance positions of
the states as a function of the total rate Γ, for all three possible configurations of two
AIS coupled to two continua are shown in figure 3.2.
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While in the balanced case the resonance positions merge when the branching point
Γ = ∆E is reached, in the partially balanced case the stabilization still takes place but
the two resonances are separated by |2i∆E(Γ1 − Γ2)|. Finally, in the unbalanced case
after an initial shrinking the width of the quasi-energy zone reaches a minimum and
then becomes larger again.
It is also possible to derive an expression for the minimum of the resonances’ width for
the unbalanced configuration when Γ1 = Γ2:

Γmin =

(
∆2
E

4(
∑

j

√
R1jR2j)2 − 16(

∑
j

√
R1jR2j)4

)1/2

(3.23)

where Γij = RijΓ, Rij being a branching ratio. This result can be useful as one could
think of tuning the interaction between discrete and continuum states by means of a
laser field and optimally controlling the lifetime of the resonances under study. It is
also easy to check that for the case where Γ1j = Γ2j (R1j = R2j), the minimum position
is Γmin →∞ as one would expect.

3.2.2 Time-evolution of the bound states’ populations

To give a complete picture of the three cases of interference stabilization, we have to
look at the probability amplitudes of the discrete states. Expressing the initial field-free
states in the basis of the eigenstates of the Hamiltonian, we find that

ci(t) =
∑
α=±

CαA
α
i e
−iγαt (3.24)

where the amplitudes Aαi and the constants Cα are given by

A±1 = −i (3.25)

A±2 =
1

2

∆E − i(Γ1 − Γ2)±
√

∆∑
j

√
Γ1jΓ2j

(3.26)

C+ =
c1(0)A−2 − c2(0)A−1
A−2 A

+
1 − A+

2 A
−
1

(3.27)

C− =
c2(0)A+

1 − c1(0)A+
2

A−2 A
+
1 − A+

2 A
−
1

(3.28)

The time evolution of the amplitudes can be written in term of an evolution operator
as follows: (

c1(t)
c2(t)

)
= e

i
2

(∆1+∆2)te−
Γ
2
tU(t)

(
c1(0)
c2(0)

)
(3.29)
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where the matrix elements of U(t) are

U11 = cos(Ωt) +
iα

Ω
sin(Ωt) (3.30)

U12 = Γ12
sin(Ωt)

Ω
(3.31)

U21 = −Γ12
sin(Ωt)

Ω
(3.32)

U22 = cos(Ωt)− iα

Ω
sin(Ωt) (3.33)

and Ω =
√

∆/2 =
√
α2 − 4Γ2

12/2, α = ∆E + i(Γ2 − Γ1). Taking the limit of small
coupling, i.e. Γ12 � ∆E, it is possible to verify that the above equations reduce to the
case of two single autoionizing resonances decaying at corresponding rates Γi when the
interference stabilization effect vanishes.
The frequency Ω clearly affects the evolution of the amplitudes: before the branching
point, in the simplest case of Γ1 = Γ2, Ω is a real quantity and therefore affects only
the position of the resonances, resulting in a phase factor that has no effect on the
populations. For Γ ≥ ∆E, Ω becomes an imaginary quantity and effectively affects the
decay rate Γ. Larger values of |Ω| in this case lead to a slower decay; in the limit of
big Ω, one can verify that half of the population is lost toward the continuum while
the other half remains trapped between the two resonances.
In figure 3.3, I report the time-evolution of the populations in the auto-ionizing states
corresponding to the three cases of interference stabilization for increasing total rate
Γ. The stabilization effect can be directly seen by looking at the decay times of the
dressed states, i.e. τ± = 1/Γ±: in the balanced and partially balanced cases, the decay
τ+ becomes an increasing function of the total rate Γ once the branching point is
passed; notice that in the first case the width of the resonances coincide until Γ = ∆E.
In the unbalanced case however the rate τ+ is an increasing function of Γ only for a
small interval after the branching point.
The resulting initial populations reflect these qualitative observations in the plots on
the left side. In the balanced case, we are quickly brought to an equal distribution of
the population in the two states which decay together at the same rate. In the limit of
very large Γ, half of the population is lost and half is trapped between φ1 and φ2. In
the partially balanced case, due to the difference between the total couplings Γi, the
widths of the resonances are not equal at the branching point. In fact, the lifetime of
the stabilized dressed state increases faster than in the balanced case.

3.2.3 Photoelectron spectrum

Using the AIS amplitudes expressed in the dressed states basis (equation 3.24), we can
now find the explicit time-dependence of the continuum amplitudes using equation 3.9.
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Figure 3.3: Time-dependent populations and decays of the initial field-free and dressed states
respectively for the three different configurations of interference stabilization and initial con-
ditions c2(0) = 1, c1(0) = 0. The solid (dashed) lines on the left correspond to c1(t) (c2(t)).
On the right, the dressed-state associated decays τ± = 1/Γ± are plotted in function of Γ/∆E.

This yields

cEj(t) = ie−i∆Ej
t

[
dEjg

2
+
∑
i

VEji
∑
α

CαA
α
i

i(∆Ej − γα)

(
1− e−i(γα−∆Ej

)t
)]

(3.34)

The photoelectron spectrum is in turn given in the detection limit t→∞ by

PE = lim
t→∞

∑
j

|cEj(t)|2 (3.35)

To analyze the effect of interference stabilization on the photoelectron spectrum, we
forget about the Fano picture by neglecting the interference effect between the direct
and indirect ionization. Accordingly, I assume that the continuum is empty at initial
times and neglect the first term on the RHS of equation 3.34, setting to fixed values
the initial conditions for the discrete states ci(0). The resonance profiles are thus
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3.2. THEORY OF INTERFERENCE STABILIZATION

Lorentzians.
In figure 3.4, I set c1(0) = c2(0) and report the photoelectron spectrum for the three
cases of interference stabilization for two states coupled to two continua. In all three
cases a sharp drop in probability is observed after Γ = ∆E around the resonance
energy corresponding to the stabilized state. As expected, the width of the dip evolves
according to the quasi-energy plots, shrinking in the balanced and partially balanced
case for increasing couplings and getting larger after the point of minimum width in the
unbalanced one. In the partially balanced case, where the total coupling strengths Γi
differ from one another, the shift from the middle point is also observed as predicted.
Although stabilization is clearly occurring in all three cases, the population in the
continuum is distributed over the unstable state - the broader resonance on top of
which the dip sits. Therefore, only the fast-decaying superposition of field-free states
is populated. To take advantage of the stabilization against ionization, we therefore

Figure 3.4: Photoelectron spectrum for the balanced (a), partially balanced (b) and unbalanced
(c) cases. In all plots the zero of the x-axis corresponds to the mean energy between the two
resonances. In the plots on the top, the normalized spectrum as a function of the reduced
total rate Γ/∆E is plotted as a false color map. The quasi-energy zones are plotted on top of
the spectrum as solid blue and red lines. The dotted lines which correspond to cuts through
the spectrum at a fixed total rate, correspond in color to the lineshapes in d, e and f.

need to populate the slowly decaying superposition. This can be done by inducing a
phase shift between the initial amplitudes of the field-free states, which changes the
projection of the states on the dressed basis.
In figure 3.5 I report for the balanced case the residual population wres(t) =

∑
i |ci(t)|2

for a fixed total rate Γ/∆E = 4 and varying phase difference ∆φ between the two
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3.2. THEORY OF INTERFERENCE STABILIZATION

discrete states at initial times. The plot clearly shows that by changing the phase
difference from 0 to π the residual population decays at a slower pace. For comparison,
the inset shows the dressed states decay e−Γ±t. In figure 3.6, the real and imaginary
part of the terms CαA

α
i = Bα

i , i.e. the components of the discrete states amplitudes
on the dressed basis, are shown as a function of the total rate Γ/∆E for the limiting
cases ∆φ = 0, π. Blue and red markers correspond respectively to the discrete states
|1〉 and |2〉 while crosses and squares correspond to the dressed states |+〉 and |−〉.
When ∆φ = 0, for large values of Γ/∆E the only non-zero projections are B−i , i.e.
only the fast-decaying dressed state |−〉 is populated. This would correspond to the
balanced case of the photoelectron spectrum of figure 3.4. When ∆φ = π instead, the
projections B−i approach zero for large Γ/∆E while the projections B+

i approach an
asymptotic non-zero value. This shows that only the slow decaying state is populated
when a π shift between the initial amplitudes is present.
This is an interesting result as I clearly show that by changing the relative phases
between the initial discrete states one can selectively populate the long or short lived
state. One could for example think of coupling off-resonantly the two states to a third
one via an additional field and achieve in this way control of the relative phases and
thus the profile of the photoelectron spectrum. Although I show here only the case of
two Lorentzian profiles, the effect should occur for a Fano system as well. In the next
section, I will show indeed that opposite or equal Fano prameters result in different
absorption profiles.

Figure 3.5: The residual population in the bound states wres(t) =
∑
|ci(t)|2 for the rate

Γ/∆E = 4 and different phase differences ∆φ between the discrete states. The inset shows
the decay of the fast and slow decaying dressed states.
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3.2. THEORY OF INTERFERENCE STABILIZATION

Figure 3.6: The real (a) and imaginary (b) part of the amplitudes CαA
α
i = Bα

i as a function
of the total reduced rate Γ/∆E for ∆φ = 0, π.

3.2.4 Absorption spectrum

In order to find the absorption spectrum, one can use the optical theorem which re-
lates the absorption cross section to the imaginary part of the dipole spectrum in the
frequency domain:

σabs(ω) ∝ Im
[
d̃(ω)

]
(3.36)

We thus proceed to find the dipole response in the time-domain, defined as d(t) =
〈Ψ(t)| Ĥ |Ψ(t)〉. Separating our wavefunction as Ψ = Ψg + Ψex, where Ψex accounts for

the discrete and continuum states, we find for the dipole moment 〈Ψg| Ĥ |Ψex〉

d(t) =

[
i
ΓgC
2
δ(t) +

∑
i,α

CαA
α
i e
−iγαtdgi

2
(1− i/qi)

]
Θ(t) (3.37)

We then take the Fourier transform of this expression and find the absorption spectrum
of our system. We report the absorption spectrum for the balanced case of interference
stabilization in figure 3.7. In the panels a) and c) of the plot, the two resonances
have equal Fano parameters q1 = q2 while in panels b) and d) the parameters are
opposite q1 = −q2. The resulting resonance profile in the regime of stabilization clearly
changes depending on the q parameters, which determine the initial conditions for the
amplitudes as expressed in equation 3.19. Therefore changing the sign of the Fano
parameter corresponds to changing the phase of the amplitude by a factor of π as
in the previous chapter. When the Fano parameters are the same, the profile has
two points of destructive interference around an asymmetric central peak whose width
shrinks as Γ is increased. This double-zero profile is in accordance with the existing
literature [42]. In the case of opposite q parameters instead, the resulting central peak
is symmetric due to the two tails of the initial Fano profiles.
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3.2. THEORY OF INTERFERENCE STABILIZATION

Figure 3.7: Absorption spectrum for the case of two Fano profiles with equal (a and c) and
opposite (b and d) signs of the Fano parameters. The figures a and b are false color plots of
the profiles as a function of the total rate Γ/∆E, while the plots c and d are cuts through the
maps corresponding to the dashed lines in a and b.

In conclusion, in this chapter I showed how the interference stabilization theory
can be extendend to include the case of an arbitrary number of continua coupled to
two discrete states. Novel theoretical results include the partially balanced and un-
balanced case of interference stabilization; furthermore, I showed how the stabilization
effect maps onto the time-dependent populations and absorption and photoelectron
spectrum of the system. Moreover, by changing the relative phase between the dis-
crete amplitudes, one can selectively excite the slow or fast-decaying dressed state and
take full advantage of the interference stabilization effect. To clearly point out the
interference stabilization effect, I decided to provide qualitative plots.
In the next chapter, I will show how the interference stabilization effect in autoioniza-
tion can be applied to the Fano resonance of N2 at 17.33 eV which can be modeled as
two states coupled to four continua.
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Chapter 4

Interference stabilization in N2

In the previous chapter I have introduced the effect of interference stabilization in the
case of two discrete states coupled to a number of continua. Compared to the existing
literature, the inclusion of additional continua adds complexity to the system. I have
then shown how the quasi-energy zones of the dressed system maps onto the population
of the bound states and the photoelectron and absorption spectrum. The latter are
two quantities which can be compared to the experiment, providing a benchmark for
the theoretical predictions. In this section, I will show how the theory of interference
stabilization was applied in one recent publication to the Fano resonance of N2 at 17.33
eV [6].

4.1 Theoretical model

As previously mentioned, theoretical predictions and experimental results point at the
presence of two overlapping resonances contributing to the resonance at 17.33 eV in
N2, the 3dπg and the 4′s′σg members of the Rydberg series converging to the (B2Σ+

u )
threshold [5,13,27]. The ab initio paper from 1983 assigned the dominant contribution
to the 3dπg state, which is coupled to the X2Σ+

g and A2Πu continua of the ion N+
2 . Due

to the space-fixed molecular frame in which the theoretical calculations were done, the
symmetry of the electronic wavefunction associated with the excited Rydberg state is
preserved in the autoionization process and thus the 3dπg state is coupled to the XΠ
and AΠ continua. Similarly, the 4′s′σg state is coupled to the XΣ and AΣ continua.
The coupling strength, the resonance energy and the Fano parameters for the partial
cross sections extracted from the fitted theoretical curves in [13] are reported in the
table 4.1. It is clear that while the theoretical results predict the resonances widths
to be similar, this fact is contradicted by the experimental results which show two
states having substantially different lifetimes as shown in the previous chapter [5].
Yet, in the experiment on gas-phase N2 the molecular frame is not fixed. That is, the
N2 molecule can freely rotate leading to autoionizing transitions involving changes
in the rotational states of the molecule. This conclusion is indeed supported by
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another experimental paper from 1993, where the Hopfield series of N2 was inves-
tigated at room temperature and in rotationally-cold jets [27]. In the article, Hu-
ber et al. point out that at high rotational temperatures the coupling of the an-
gular momentum of the electron becomes weaker than the rotational coupling. 4.1.

3dπg XΠ AΠ
E0[eV] 17.35 17.35
Γ[meV] 63 74

q 1.18 0.37
4′s′σg XΣ AΣ
E0[eV] 17.405 17.35
Γ[meV] 63 88

q -1.08 4.87

Table 4.1: Theoretical pa-
rameters extracted from fig-
ure 5 of Ref. [13].

As a result, the Rydberg states can not be described any-
more by the angular momentum projection on the molec-
ular axis Σ and acquire a mixed Σ/Π character, leading to
their coupling to ionization continua of different symme-
try. This series of observations is the starting point of our
application of the theory of interference stabilization effect
to the case of this autoioinizing resonance: we model the
autoionizing process by considering two states (3dπg and
4′s′σg) coupled to four continua (XΠ,AΠ,XΣ,AΣ). While
the couplings between states and continua of same symme-
try are set to the values in table 4.1, the couplings between
the ground state and the four continua can be extracted
from the q-parameters. The only remaining free parame-
ters are the ratio between the dipole matrix elements be-

tween ground state and discrete states dg1/dg2 and the symmetry-breaking rotational
couplings.

4.2 Theoretical results

From equation 3.36, we calculate the absorption spectrum and set the ratio dg1/dg2
such that our curve matches Raoult’s one when interference stabilization is not taken
in account (figure 4.1). We then proceed to include the rotational couplings by setting
them equal to each other and scaling them from 0 to 25 meV, for a maximum total
rotational coupling Γrot of 100 meV. The quasi-energy plot of the two states is shown
in figure 4.1. Note that even for small rotational couplings, the resonances position
shift substantially and for a total rotational coupling of 25 meV their widths’ ratio
(corresponding to the inverse of their lifetimes) exceeds two. However, to match the
experimental results by Morin et al. [14] and resolve the discrepancies between theory
and experiment, it is sufficient to vary the rotational couplings between 0 and 1 meV
(figure 4.1).
Our theoretical results suggest that the 4′s′σg state is stabilized by the rotationally-
induced couplings as, in a two-state picture, the weakly coupled state undergoes sta-
bilization. This is confirmed by the experimental results discussed at the end of the
previous chapter: there, the long-lived component had a large asymmetry parameter,
corresponding to the emission of an electron from an s-type orbital in the one-photon
ionization by the linearly polarized XUV. The fact that the 4′s′σg state has smaller
rotational couplings than the 3dπg is indeed nothing strange: due to the spherical
symmetry of a s-type orbital, rotations of the molecular axis should not lead to any
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change of the distribution, rendering a effectively rotationally-decoupled state. On the
other hand, the d-type orbital is symmetric with respect to the molecular axis and
should therefore follow its rotations. This then induces stronger rotational couplings
and hence leads to destabilization.
In conclusion, the inclusion of the interference stabilization effect can explain the ex-
isting discrepancies between theory and experiment in the autoionization of the Fano
resonance at 17.33 eV in N2. Although the symmetry-breaking rotational couplings
are two orders of magnitude smaller than the symmetry-allowed ones, substantial dif-
ferences in the resonance absorption profile are observed nonetheless.

Figure 4.1: Panel a): quasi-energy zones plot for the 3dπg (red shade) and 4′s′σg (blue
shade) states in function of the total rotational coupling Γrot, where the black lines represent
the resonance positions. The resonance have a non-vanishing width when Γrot = 0 due to the
symmetry-allowed couplings. Panel b): the experimental XUV absorption curve from Morin
et al. [14] (solid black line) and the calculated profile from this thesis work with and without
interference stabilization (blue and red solid lines respectively). Panel c): the calculated XUV
absorption profile taken from [13] (dotted black line) and from this thesis work (solid red line)
when no interference stabilization is included. The absorption resonance is not included in
our treatment and can be neglected due to the large energy separation from the resonance at
17.33 eV. All images are adapted from [6].
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Chapter 5

Conclusion

5.1 Summary

This thesis presents a study of the role of the interference stabilization effect in the
autoionization of the Fano resonance at 17.33 eV in N2.
The analysis of previous experimental and theoretical works suggested the presence of
rotationally-induced symmetry-breaking couplings in gas phase N2, allowing for the
interaction of the 3dπg and 4′s′σg Rydberg states during autoionization through con-
tinuum of different symmetry. Previous ab-initio calculations, which did not include
any interaction to a common continuum, were not able to reproduce experimental data
on the absorption spectrum of N2 in the energy range close to the above mentioned
Fano resonance.
In order to explain the process from the point of view of the interference stabilization
effect it was thus necessary to include in the existing theoretical framework the realistic
case of two discrete states coupled to a number of continua with varying strength.
This was accomplished by solving the time-dependent Schrödinger equation for a sys-
tem composed of a ground state coupled by a short XUV pulse to the continua and the
two states. By adiabatically removing the continuum, we obtained a set of coupled dif-
ferential equations describing the discrete states’ amplitudes. Analytical expressions
for the quasi-energies of the eigenstates of the Hamiltonian describing the discrete-
continuum interaction were found and new cases for interference stabilization were
shown to exist; namely, the partially balanced and unbalanced cases.
Furthermore we showed how the new cases of the effect map onto the field-free states
time-dependent populations and the photoelectron and absorption spectrum, as these
are observables which can be directly compared to experiments.
Finally, by using parameters extracted from previous theoretical works and including
the effect of interference stabilization induced by rotational couplings, we were able
to fit the experimental XUV absorption profile of the Fano resonance at 17.33 eV in
N2, resolving the existing theoretical and experimental discrepancies and verifying our
initial hypothesis.
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5.2 Outlook

Due to its very general requirements, the interference stabilization effect should play
an important role in a variety of different quantum systems.
In this thesis specifically, I have shown how the effect determines the complex line pro-
file in the autoionization process of N2 when two resonances with overlapping widths
interact with one or more common continua. It is reasonable to expect that this should
occur for other members of the same Rydberg series as well. On the other hand, recent
transient absorption experiments seem to hint at the presence of interference stabiliza-
tion in autoionization of other diatomic molecules like O2 [17]: one of the next steps
will be therefore to apply the theory presented here to other molecular and atomic
targets.
Furthermore, the theory can be extended to the most general configuration of n discrete
states coupled to N continua: although numerical solutions would be necessary, the
qualitative knowledge of the effect coming from the two-state case could help disentan-
gle complex multi-electronic dynamics. One could for example devise a pump-probe
photoelectron experiment where a band of autoionizing states could be excited by a
pump pulse and later probed via probe-induced ionization.
Finally, interference stabilization can also be seen as a two-photon Raman-like tran-
sition as the role of the two autoionizing states could be taken by two discrete states
below the ionization threshold coupled by an external laser field to the continuum:
from this point of view, it shares strong similarities with the famous Stimulated Ra-
man Adiabatic Passage (STIRAP) process [43]. First discovered in 1989 by Bergmann
et al. [44], STIRAP is a standard technique used in quantum control and quantum
information to transfer population efficiently from an initial to a target state; interfer-
ence stabilization could hence be used to achieve the same transfer via a continuum.
As noise and decoherence still dominate the quantum computing landscape, the way
out could be to increase abruptly the coupling to the environment rather than the
opposite.
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Appendix A

Interference Stabilization and
STIRAP

Stimulated Raman Adiabatic Passage (STIRAP)

Stimulated Raman Adiabatic Passage (STIRAP) is an efficient scheme to achieve selec-
tive population transfer between an initial and a target state of an atomic or molecular
system via an intermediate state. The technique was first developed in 1989 by K.
Bergmann et al. [44] and has since been extensively used to optimally control well-
defined quantum states using laser light.
Let us hereby describe the simplest STIRAP configuration, as depicted in figure {A.1}.
The system is composed of three discrete states |Ψ(t)〉 =

∑
i ci(t) |Ψi〉 and is interacting

with a two-color field εs(ωs, t) + εp(ωp, t). The indexes s and p refer respectively to the
Stokes pulse, which couples the initial state |Ψ1〉 to the intermediary one |Ψ2〉, and the
Pump pulse, coupling |Ψ2〉 and the target state |Ψ3〉. The intermediary state |Ψ2〉 can
also decay radiatively to lower-lying states as depicted in figure. Let us simplify the
picture by supposing that the detunings are small, i.e. ∆p,s � Ωp,s.

In order to describe the interaction of the field with the system, we have to solve
the time-dependent Schröodinger equation

i
d

dt
C(t) = H(t)C(t) (A.1)

where C(t) = [c1(t), c2(t), c3(t)]T is a vector whose elements are the probability
amplitudes of the respective bound states and H(t) is the Hamiltonian. In the Rotating
Wave Approximation, the Hamiltonian in atomic units can be written as

H(t) =

 0 1
2
Ωp(t) 0

1
2
Ωp(t) ∆p

1
2
Ωs(t)

0 1
2
Ωs(t) ∆p −∆s

 (A.2)
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Figure A.1: Three state STIRAP.

where Ωp(t) = d2,3 ·εp(ωp, t) and Ωs(t) = d1,2 ·εs(ωs, t) are the Rabi frequencies of the
Pump and Stokes pulses. If the one-photon detunings are the same, i.e. ∆p = ∆s = ∆,
the Hamiltonian admits three adiabatic eigenstates:

|Ψ+(t)〉 = sin θ(t) sinφ(t) |Ψ1〉+ cosφ(t) |Ψ2〉+ cos θ(t) sinφ(t) |Ψ3〉 (A.3)

|Ψ0(t)〉 = cos θ(t) |Ψ1〉 − sin θ(t) |Ψ3〉 (A.4)

|Ψ−(t)〉 = sin θ(t) cosφ(t) |Ψ1〉 − sinφ(t) |Ψ2〉+ cos θ(t) cosφ(t) |Ψ3〉 (A.5)

where θ(t) = arctan
(

Ωp(t)

Ωs(t)

)
and φ(t) = 1

2
arctan

(√
Ω2
p(t)+Ω2

s(t)

∆

)
are the so-called

mixing angles. The corresponding energies of the dressed states are

γ±(t) =
1

2

(
∆±

√
∆2 + Ω2

p(t) + Ω2
s(t)
)

(A.6)

γ0(t) = 0 (A.7)

It is obvious that the dressed state |Ψ0(t)〉, coherent superposition of the initial and
target state, is a dark state, as it has no projections on the intermediate state |Ψ2〉
and cannot therefore decay radiatively through Γ. A very efficient population transfer
can be achieved precisely due to the presence of this trapped state, which depends
only on the mixing angle θ(t) and therefore on the instantaneous ratio of the Rabi
frequencies of the Pump and Stokes fields. Consequently, if one applies the pulses in a
counterintuitive order, that is

Ωp(t)

Ωs(t)
→ 0 for t→ −∞ (A.8)

Ωp(t)

Ωs(t)
→∞ for t→ +∞ (A.9)
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the mixing angle θ(t) will evolve from 0 to π/2, while the dressed state Ψ0(t) will
accordingly evolve from the field-free initial state |Ψ1〉 to the target one |Ψ3〉. To
achieve complete population transfer without losses is therefore fundamental to force
the system to remain at all times in the dark state. This can be done by providing an
adiabatic evolution in time, that is, the pulses must have a large area, or equivalently√

Ω2
p + Ω2

s � T−1 (A.10)

where T is the pulse width. Hence, if the adiabatic condition is provided, once we
apply a counterintuitive sequence of pulses we will always achieve complete population
transfer from the initial state |Ψ1〉 to the target one |Ψ3〉. In figure {A.2}, we report
the sequence of pulses together with the evolution in time of the quasi-energies and
bare states’ populations for the three-state STIRAP configuration.

Figure A.2: Time dependence of the Pump and Stokes Rabi frequencies (top panel), of the
eigenergies (middle panel) and of the bare states’ populations (bottom panel) for a counter-
intuitively ordered pulse sequences. Figure adapted from [45].

This scheme can be easily extended to more complex configurations, such as four-
state STIRAP or STIRAP chains. We refer the reader to the literature for further
details [43,45].
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Interference stabilization and STIRAP

As previously mentioned in this thesis work, interference stabilization can be seen
as a two-photon Raman transition between two closely lying states via a continuum.
The link between the latter and the Stimulated Raman Adiabatic Passage is therefore
clear, as it is enough to substitute the intermediate discrete state of STIRAP with a
continuum in our equations to obtain the interference stabilization case. Accordingly,
the dark state of STIRAP is substituted in interference stabilization by the quasi-dark
state with corresponding quasi-energy (cfr. equation [3.21]):

γ+(t) =
1

2
(E1 + E2 − iΓ(t) +

√
α(t)2 − Γ(t)2) (A.11)

where we introduced a time-dependence in the rates Γi(t) and α(t) = ∆E+i(Γp(t)−
Γs(t)). The subscripts p,s refer to the Pump and Stokes pulse as in panels b,c of figure
A.3. It is clear that in the limiting case of very strong coupling, i.e. Γ(t)� |E1 −E2|,
the losses of the quasi-dark state are minimized, effectively enhancing the efficiency of
the population transfer process through the dressed state. Equivalently, in the case
of degenerate initial and target state, interference stabilization of two states coupled
through a continuum reproduces the limiting case of the simple three-level STIRAP
configuration.
In panel a of figure A.3, I report the trajectory of the two state system on the quasi-
energy surface of the quasi-dark state |+〉. The surface is defined as the absolute value
of the imaginary part of the quasi-energy, i.e. its dissipative part, plotted against the
intensity of the Stokes and Pump pulse. The black dots correspond to the trajectory,
that is the instantaneous values of the quasi-energy during the dynamics, referring to
the counter-intuitive sequence of pulses in panel b. To minimize losses, one would have
to force the evolution as much as possible on the lower values of the surface which cor-
respond to small dissipation and loss of population. This qualitative picture provides
a simple map on which one can follow the dynamics of the STIRAP process through
the continuum. Note that the presence of the branching point correspond to the initial
point of a sharp edge dividing the map in two sectors of lower and higher dissipation.

Experimental realization of STIRAP through con-

tinuum

The very stringent conditions one has to provide to achieve efficient population transfer
through the continuum include strong coupling that varies slowly in time, as the adi-
abatic condition is to be met in order to maintain the system in the quasi-dark state.
At the same time, high laser intensities will induce substantial shifts of the energy
levels, effectively making it harder to meet the adiabatic condition at all times. The
forced evolution of the system through the dark state is therefore harder to achieve in
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Figure A.3: Panel a): the trajectory (black dots) of the system on the quasi-energy map,
defined as |Im(γ+)|, as a function of time. The red arrows represent the direction of the
trajectory. Panel b): the Pump and Stokes pulses as a function of time. Panel c): diagram
of the STIRAP through continuum system.

interference stabilization in comparison with STIRAP.
Nonetheless, the first experimental demonstration of population transfer through the
continuum was reported in 2005 by Halfmann et al. [46, 47]. In this experiment, the
researchers were able to show a population transfer in He from the metastable state
2s1S0 to the excited state 4s1S0 through the ionization continuum of the parent ion.
The experiment showed a 29% transfer efficiency, a remarkable result which shows the
possibility of transferring a substantial portion of electronic population through the
ionization continuum in atomic systems.
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